KamLAND, KamLAND-Zen and Beyond

- 1. Double Beta Decay with KamLAND-Zen results, prospects and dreams
- 2. Evolution of KamLAND Scintillation Detector past 15 years and next 20 years

Sanshiro Enomoto University of Washington

KamLAND Detector: Shielded Calorimeter

Layered Shields

1000 m underground for muon reduction Outer detector for active veto Outer detector for neutron shield Buffer oil for neutron/gamma shield Balloon with EVOH for Radon shield Acrylic wall for Radon shield Air tightness for Radon/Kr shield

Active Volume

Large: 1000 ton, 13-m diameter

Clean: U: 3.5×10^{-18} g/g, Th: 5.2×10^{-17} g/g

Scintillator: 8000 photons/MeV

Viewed by PMTs: 1325×17 -inch + 554×20 -inch

Originally constructed to detect antineutrinos from surrounding reactors "Evidence for Reactor Antineutrino Disappearance", PRL 90 021802 (2003)

KamLAND as Active Low-BG Playground

Double Beta Decay

CdWO₄ Crystal

small crystal tested with KamLAND

CaF₂ Crystal

joint with CANDLES

Xe Dissolved Scintillator

KamLAND-Zen ...

Sterile Neutrinos

Ce Source (CeLAND)

- 75 kCi ¹⁴⁴Ce
- place center or outer vessel

Neutrino Beam (IsoDAR)

- use DAE δ ALUS injector
- 60 MeV proton beam to Be
- neutrons from Be
- ⁷Li(n, γ)⁸Li
- 8Li beta decays: 10²² / yr

Dark Matter

Nal Crystal (KamLAND-PICO)

- verify DAMA/LIBRA results
- ~1000 kg Nal crystal
- U 1.1 ppt, Th 0.6 ppt crystal already developed

KamLAND-Zen Project

Searches for $0\nu\beta\beta$ with 380 kg of 91.7% Enriched ¹³⁶Xe (Q=2.458 MeV)

- √ 3 wt% Xe in liquid scintillator
- ✓ contained in 1.54m radius inner balloon
- √ balloon replaceable, Xe extractable
- ✓ make use of KamLAND facilities.
 - purification system
 - PMT, ATWD digitizer, analysis tools, ...
- ✓ can live with KamLAND (reactor & geo)
- √ No BG particle escape
 - no 2.6 MeV peak from ²⁰⁸Tl
 - Bi-Po cascade decay tagging

Drawbacks:

- poor energy resolution (~4% @ 2.6 MeV)
- no β/γ discrimination

KamLAND-Zen: Key Developments

Xe-loaded Liquid Scintillator

- Density balance
- Light-yield matching to outer LS
 - Xe reduces light-yield by ~10%
 - increase PPO
 - density ...

Inner Balloon

Not commercially available, developed for ZEN

- Clean: U/Th/K ~10⁻¹³ g/g
 -no filler, no lubricant, no glue
- Thin: $25 \mu m$ for Bi-Po α -tagging
- Welding by heat-only (no glue)
- Xe-gas tight (<220 g/yr)
- Transparent: 99.4% @400nm

Inner-Balloon Fabrication & Installation

Ultrasonic cleaning in a super clean room

Xe Handling Facility

- ✓ Xe Dissolving by bubbling
- ✓ Xe Extraction by degassing & bubbling with scintillator cold trap
- ✓ Precise Control & Monitor (0.005 ~ 0.01 %)
 by density measurement & mass balance
- ✓ 91.7% Enriched ¹³⁶Xe, 610 kg in hand

Xe-LS Filling into Inner-Balloon

Inner balloon was initially filled with z [m] normal LS (no Xe) Then Xe-LS was fed from bottom 0.5 with slightly higher density (+0.035%) Initial Rn contamination makes -0.5newly filled Xe-LS very visible enrXe 330 kg filled 1.5 2.5 $x^2 + y^2 [m^2]$ (enrichment 91.7%)

 $x^2 + y^2 [m^2]$

Start data taking on Sep 24th 2011 (only two years from the first Zen funding)

Mix the whole volume

by few more full circulation

Energy Calibration

Fiducial Volume

²¹⁴Bi in balloon limits FV

Vertex resolution: $\sigma \sim 15 \text{ cm} / \sqrt{\text{E(MeV)}}$

FV ratio estimated with uniformly distributing initial ²¹⁴Bi

$$\Rightarrow$$
 3.9% / 4.1% FV error (DS1) (DS2)

All other syst. errors: <1% (136Xe amount, efficiency, etc)

Energy Spectrum & 2νββ Half Life

$$T_{1/2}^{2\nu}$$
 = 2.38 ± 0.02 (stat) ± 0.14 (syst) ×10²⁵ yr

Consistent with EXO-200

Phys.Rev.C 85 045504 (2012)

The Peak is not 0νββ

(and not ²⁰⁸TI)

 10^{4}

238U Series

··· ²³²Th Series

→ Data

— Total

 0ν ββ Spectrum shape is inconsistent at >8 σ

Balloon is Contaminated with Fukushima Fallout

¹³⁷Cs and ¹³⁴Cs dominate the balloon activity

 ^{134}Cs / ^{137}Cs ~ 0.8, consistent with fallout composition

Cs is not soluble in scintillator

Balloon is Contaminated with Fukushima Fallout

Fallouts detected in Sendai Soil:

134Cs, 137Cs, 110mAg, 129mTe, 95Nb, 90Y, 89Sr

→ all included in spectrum fit

~1000 atoms of 110mAg in Volume

- ✓ Spectrum most consistent with ^{110m}Ag (²⁰⁸Bi, ⁸⁸Y do not fit well, but not excluded)
- ✓ Decay-time consistent with ^{110m}Ag (τ_{1/2}: 250 days)
- ✓ Peak remains after Xe extraction → not from Xe - cosmic- μ interaction

<u>0νββ Limit</u> PRL 110, 062502 (2013)

213.4 days, 98.5 kg yr

Likelihood fit to binned spectrum $0\nu\beta\beta$: < 0.16 events/kg/yr

$$T_{1/2}^{0\nu}$$
 > 1.9×10²⁵ yr (90% CL) $\langle m_{\beta\beta} \rangle$ < 120 ~ 250 meV

(sensitivity: 1.0×10^{25} yr; we are top 12% lucky)

Combined with EXO-200, Comparison with Ge

Ongoing: 110mAg Removal by Distillation

Completed in Nov 2013 >90% of 110mAg removed

KamLAND-Zen 2nd Phase

Dec 2013 ~, enrXe 380 kg (+60 kg to phase 1)

Zen Future: Less Background, More Resolution

mirror prototype

Zen Dream: More Target Density

Super-KamLAND-Zen

Pressurize the Zen Balloon

× 4 more Xe concentration at 30 m deep

Evolution of KamLAND Scintillation Detector

Water Cherenkov Detector vs Scintillation Detector

Super-Kamiokande

KamLAND

Advantages

Clean (U & Th are ionic)

High light yield (x ~100 of Water Cherenkov)

→ Low energy threshold (~300 eV, limited by ¹⁴C)

Delayed coincidence \rightarrow Selective sensitivity to \overline{V}_e

Drawbacks

Costly + Layered Shields → Small

No directional sensitivity

Signal pile-up

Mess after cosmic muons (more p.e. + low thresh)

Pile-up Free Electronics (LBL, 2001)

Waveform Recording with ATWD

(ATWD: Analog Transient Waveform Digitizer)

~1.5 ns interval sampling for all channels!!

Two 4-ch ATWDs per PMT

- 4-ch for dynamic range (x20, x4 and x0.5 plus CLK)
- two ATWDs for cascading events

Bi-Po Pile-up Waveform (Data)

Proton-Decay Waveform (MC)

$$p \rightarrow K^+ \overline{\nu}_\mu; K^+ \rightarrow \mu^+ \nu_\mu; \mu^+ \rightarrow e^+ \overline{\nu}_\mu \nu_e$$

Dead-time Free Electronics (Tohoku, 2009)

Mess After Cosmic Muons

- after-pulses: up-to ~100k events in ~100 μ s
- neutrons: up-to ~100 events in ~ms

neutrons tells us location of 10 C \rightarrow pin-point veto

Free-Running FADC + Inline Digital Processing

1 GHz FADC per ch10 μs ring buffer per ch>256 event buffer per ch

Very similar to the former design after 8 years!!

Inline data processing (zero suppression etc)
Onboard processor, serial readout option

All 1325 channels, with zero-suppression (only 8 ch are shown below)

In a longer time range

Even longer time range

And more!!

<u>Dead-Layer Free Scintillating Balloon (R&D)</u>

Imperfect Bi-Po tagging due to balloon *dead-layer*

PEN was found to be scintillating material (2011)

Material	Polyethylene naphthalate	Organic scintillator (ref. [14])
Supplier	Teijin Chemicals	Saint-Gobain
Base	$(C_{14}H_{10}O_4)_n$	$(C_9H_{10})_n$
Density	$(C_{14}H_{10}O_4)_n$ 1.33 g/cm^3	$1.03{\rm g}/{\rm cm}^3$
Refractive index	1.65	1.58
Light output	$\sim 10500~\rm photon/MeV$	$10000 \mathrm{\ photon/MeV}$
Wavelength max. emission	$425\mathrm{nm}$	$425\mathrm{nm}$

First look at 50 μ m-thick PEN film (Tohoku)

- √ Scintillates!!
- ✓ Clean enough, Weld-able, chemically compatible with LS Detail studies ongoing

Scintillation Imaging (R&D)

Particle Identification using Event Size

Scintillation Imaging (R&D)

Optics and Readout Design (Tohoku)

Directional Sensitivity (R&D)

Scintillation Imaging for Anti-Neutrino Events

Neutrons remember neutrino direction but forget it soon

For Directionality,

- ✓ Reduce neutron diffusion
- ✓ Eliminate gamma emission

Detecting Antineutrino Direction is a Revolution in Geophysics

3D Mapping of U & Th distributions in Earth interior (with multi-site observation, or mobile detectors)

Directional Sensitivity (R&D)

⁶Li-loaded Liquid Scintillator

$$\overline{v}_e + p \rightarrow e^+ + n$$

$$n + {}^6\text{Li} \rightarrow {}^3\text{H} + \alpha$$

- ✓ Large capture cross-section 940 barn (H: 0.3 barn)
- ✓ α -emission, no γ (Gd and ¹⁰B both emit γ)

MC Simulation (0.15 wt% ⁶Li)

Li-loaded Liquid Scintillator Development (Tohoku)

 $PC + PPC + POE + LiBr + H_2O$ (POE: surfactant)

0.8 wt% Li (6Li abundance 7.59%, enrichment is possible) Transparency 65cm@400nm, light yield 45% of KamLAND LS

<u>Summary</u>

KamLAND-Zen 0νββ

KamLAND Scintillation Detector Evolution

2002~

- Large Volume, Ultra-Pure
- Pile-up Free Readout (ATWD)

2010~

 Dead-time Free Readout for ¹⁰C tagging etc

R&D

 Dead-space Free Container with scintillating balloon

R&D

• Scintillation Imaging for e/γ discrimination etc

R&D

Directional Sensitivity
 for geoneutrinos, supernova, ···

KamLAND Founders

VOLUME 90, NUMBER 2

PHYSICAL REVIEW LETTERS

week ending 17 JANUARY 2003

First Results from KamLAND: Evidence for Reactor Antineutrino Disappearance

K. Eguchi, ¹ S. Enomoto, ¹ K. Furuno, ¹ J. Goldman, ¹ H. Hanada, ¹ H. Ikeda, ¹ K. Ikeda, ¹ K. Inoue, ¹ K. Ishihara, ¹ W. Itoh, ¹ T. Iwamoto, ¹ T. Kawashima, ¹ H. Kinoshita, ¹ Y. Kishimoto, ¹ M. Koga, ¹ Y. Koseki, ¹ T. Maeda, ¹ T. Mitsui, ¹ M. Motoki, ¹ K. Nakajima, ¹ M. Nakajima, ¹ T. Nakajima, ¹ H. Ogawa, ¹ K. Owada, ¹ T. Sakabe, ¹ I. Shimizu, ¹ J. Shirai, ¹ F. Suekane, ¹ A. Suzuki, ¹ K. Tada, ¹ O. Tajima, ¹ T. Takayama, ¹ K. Tamae, ¹ H. Watanabe, ¹ J. Busenitz, ² Z. Djurcic, ² K. McKinny, ² D.-M. Mei, ² A. Piepke, ² E. Yakushev, ² B. E. Berger, ³ Y. D. Chan, ³ M. P. Decowski, ³ D. A. Dwyer, ³ S. J. Freedman, ³ Y. Fu, ³ B. K. Fujikawa, ³ K. M. Heeger, ³ K. T. Lesko, ³ K.-B. Luk, ³ H. Murayama, ³ D. R. Nygren, ³ C. E. Okada, ³ A.W. P. Poon, ³ H. M. Steiner, ³ L. A. Winslow, ³ G. A. Horton-Smith, ⁴ R. D. McKeown, ⁴ J. Ritter, ⁴ B. Tipton, ⁴ P. Vogel, ⁴ C. E. Lane, ⁵ T. Miletic, ⁵ P.W. Gorham, ⁶ G. Guillian, ⁶ J. G. Learned, ⁶ J. Maricic, ⁶ S. Matsuno, ⁶ S. Pakvasa, ⁶ S. Dazeley, ⁷ S. Hatakeyama, ⁷ M. Murakami, ⁷ R. C. Svoboda, ⁷ B. D. Dieterle, ⁸ M. DiMauro, ⁸ J. Detwiler, ⁹ G. Gratta, ⁹ K. Ishii, ⁹ N. Tolich, ⁹ Y. Uchida, ⁹ M. Batygov, ¹⁰ W. Bugg, ¹⁰ H. Cohn, ¹⁰ Y. Efremenko, ¹⁰ Y. Kamyshkov, ¹⁰ A. Kozlov, ¹⁰ Y. Nakamura, ¹⁰ L. De Braeckeleer, ¹¹ C. R. Gould, ¹¹ H. J. Karwowski, ¹¹ D. M. Markoff, ¹¹ J. A. Messimore, ¹¹ K. Nakamura, ¹¹ R. M. Rohm, ¹¹ W. Tornow, ¹¹ A. R. Young, ¹¹ and Y.-F. Wang¹²

(KamLAND Collaboration)